Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect.
نویسندگان
چکیده
Acousto-optic imaging in diffuse media is a dual wave-sensing technique in which an acoustic field interacts with multiply scattered laser light. The acoustic field causes a phase modulation in the optical field emanating from the interaction region, and this phase-modulated optical field carries with it information about the local optomechanical properties of the media. We report on the use of a pulsed ultrasound transducer to modulate the optical field and the use of a photorefractive-crystal-based interferometry system to detect ultrasound-modulated light. The use of short pulses of focused ultrasound allows for a one-dimensional acousto-optic image to be obtained along the transducer axis from a single, time-averaged acousto-optic signal. The axial and lateral resolutions of the system are controlled by the spatial pulse length and width of the ultrasound beam, respectively. In addition, scanning the ultrasound transducer in one dimension yields two-dimensional images of optical inhomogeneities buried in turbid media.
منابع مشابه
High-sensitivity ultrasound-modulated optical tomography with a photorefractive polymer.
By detecting ultrasonically tagged diffuse light, ultrasound-modulated optical tomography images optical contrast with ultrasonic resolution deep in turbid media, such as biological tissue. However, small detection etendues and weak tagged light submerged in strong untagged background light limit the signal detection sensitivity. In this Letter, we report the use of a large-area (~5 cm×5 cm) ph...
متن کاملTime-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution.
Focusing light inside highly scattering media is a challenging task in biomedical optical imaging, manipulation, and therapy. A recent invention has overcome this challenge by time reversing ultrasonically encoded diffuse light to an ultrasound-modulated volume inside a turbid medium. In this technique, a photorefractive (PR) crystal or polymer can be used as the phase conjugate mirror for opti...
متن کاملUltrasound-modulated optical tomography at new depth.
Ultrasound-modulated optical tomography (UOT) has the potential to reveal optical contrast deep inside soft biological tissues at an ultrasonically determined spatial resolution. The optical imaging depth reported so far has, however, been limited, which prevents this technique from broader applications. Our latest experimental exploration has pushed UOT to an unprecedented imaging depth. We de...
متن کاملComputations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractive-based detection.
Acoustophotonic imaging uses ultrasound-modulated scattered light to improve the quality of optical imaging in diffusive media. Experiments that use photorefractive-crystal-based detection have shown that there is a large dc shift in the acoustically modulated or ac optical signal, which could be utilized to further improve optical imaging resolution. We report that photon paths in a diffusive ...
متن کاملSpatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit
: Optical separate spatial dark and bright soliton pairs in steady-state case in one dimension, for a series circuit consisting of two-photon photorefractive (PR) crystal are investigated. Each crystal can be supported the spatial soliton, and at least one must be photovoltaic. The two solitons are known collectively as separate spatial soliton pairs with dark–dark, bright–dark and bright–brigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 44 19 شماره
صفحات -
تاریخ انتشار 2005